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Abstract-EQuations of motion are derived for torque-free, elastic, dissipative systems possessing a finite
number of degrees of freedom. The equations are linearized about a particular solution in the variables
describing the "internal" configuration of the system, and then SAM, a computer program based on these
equations, is described. The program permits the user to obtain information about motions of a given system
without writing any computer code. The paper concludes with an illustrative example involving a comparison
of results obtained, on the one hand, by solving the exact equations of motion and, on the other hand, by using
SAM to explore the behavior of a satellite containing a passive nutation damper. The example shows rather
vividly both that relatively small deformational motions can give rise to large attitude motions and that SAM
can describe these motions satisfactorily.

INTRODUCTION
Computer simulations of attitude motions of deformable spacecraft play an important role in
spacecraft design and operation. Since it is generally difficult, time consuming, and expensive to
produce such simulations, it is worthwhile to seek means to facilitate this task. The present paper
is intended to do this by showing how to bring the equations governing a large class of spacecraft
motions into a form permitting the construction of a computer program that is particularly easy to
use.

All spacecraft are deformable to some extent. In certain situations, the deformations are so
small that they have no discernible effect on attitude motions and can, therefore, be left out of
account. In other words, such motions can be simulated by working with equations based on a
rigid body model of the spacecraft. In other situations, relative motions of parts of a vehicle are
so large that a satisfactory simulation can be achieved only by using equations that characterize
deformations in all detail. The most frequently encountered situations, however, are those
involving deformations which, while relatively small, nevertheless affect or, at least, might affect,
attitude motions significantly. The principal idea underlying the present work is that one may
hope to simulate such motions satisfactorily by employing an algorithm based on equations
describing the deformational motion only approximately. Before further comments are made
regarding approximations, a few words about the mathematical model employed in the analysis
are in order.

One of the more common ways to model a nonrigid spacecraft is to treat it as a set of N rigid
bodies connected to each other in such a way that each body shares at least one point with one
other body. If there are no closed loops, such a system is called a tree structure. Since 1965, when
Hooker and Margulies[l] first dealt with an N-body tree structure, much attention has been
devoted to this subject [2-8], including efforts to produce computer programs[9-11].
Simultaneously, efforts were undertaken to analyze spacecraft that cannot be modeled as tree
structures. For example, analyses accommodating contiguous bodies capable of translating
relative to each other have been performed[l2, 13]; programs have been written to deal with
flexible spacecraft members[I4-16]; and sets of equations applicable to systems containing
axially symmetric rotors have been formulated[17,18].

The equations and the computer program developed in the present paper apply to any set of
particles connected to each other by time-invariant, holonomic constraints. Explicit provisions
are made for allowing subsets of the set of particles to form rigid bodies. Hence, tree structures
are included among the systems to which this work applies, as are systems involving contiguous
bodies capable of translating relative to each other. Since, by resorting to the so-called discrete
element method, one can treat continuous elements as sets of particles, attitude motions of
spacecraft containing such elements can be studied in terms of the present theory. In this sense,
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the present work is more general than the references cited so far, and it parallels the efforts of a
number of authors [19-24] who have dealt with flexible spacecraft. However, the investigation is
confined to torque-free systems; cyclic coordinates are ruled out, so that rotors are excluded
from consideration; and a linearization is performed, rendering the resulting equations
approximate. Thus, there certainly exist problems the solutions of which lie outside of the scope
of the program, but which can be solved by using existing programs.

The central feature of the present program is that it can simulate motions accompanied by
large attitude changes, despite the fact that it involves linearized equations. The approximations
made in order to arrive at these results are similar in character to those employed by Roberson
and Likins [25, 26], Larson[27], Fleischer and Likins [I I], and Samin and Willems[24].

SYSTEM DESCRIPTION

The system S to be studied consists of v particles connected to each other by time-invariant,
holonomic constraints in such a way that S possesses n +6 degrees of freedom in a Newtonian
reference frame N. Particles comprising subsets of the particles of S may be connected to each
other so as to form rigid bodies.

One can always introduce a set of mutually perpendicular axes B I, B2, B3 originating at S*, the
mass center of S; let B be a reference frame in which BI> B2, B3 are fixed; and describe the
configuration of S in N in terms of n non-cyclic "internal" coordinates q\, ... , qn, governing the
configuration of S in B, and six "external" coordinates 81, ... , 86 , governing the orientation of B
in N and the position of S* in N. Moreover, this can be done in such a way that, when
q\ = ... = qn = 0, BI> B 2 , B 3 are principal axes of inertia of S for S*. Of the six external
coordinates, only three, namely those governing the orientation of B in N, are of interest, and
these are designated 81> 82, 83• This is so because it is presumed that S is torque-free, that is, that
the resultant moment about S* of all external forces is equal to zero, so that the orientation of B
in N does not depend on the motion of S* in N.

w, the angular velocity of B in N, is intimately related to 91> 92 , 93 and to their time
derivatives, 6., 62, 63• That is, if w is written as

(I)

where hI, h2 , b3 form a dextral set of orthogonal unit vectors respectively parallel to B I, B2 , B3 ,

then WI> W2, W3 may be regarded as functions of 81, 92, 83, 61, 62, 63, and t, the time.
Regarding forces of interaction between particles of S, it is presumed that these are such that

the generalized active forces g, ... , Fn associated with the internal coordinates can be
expressed as

E -V(q).,+D,(q,q) r=l, ... ,n (2)

where V(q), which has the character of a potential function, denotes a function of ql> , qn,
whereas D,(q, q), which is associated with energy dissipation, is a function of q\, , qn,
ql>' .. , qn such that

D,(q, 0) = 0 r 1, ... , n (3)

In (2), as in the sequel, a subscript comma followed by one or more letters signifies partial
differentiations with respect to internal variables when the letter is r, s, or u, and with respect to
the time derivatives of the internal variables when the letter has a dot over it, that is, r, $, or u. For
example, if f is explictly a function of the external and internal coordinates and of the time
derivatives of the internal coordinates, then

(4)

All differentiations of vectors are performed in reference frame B, except as noted. Furthermore,
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the summation convention will be used; that is, a repeated index takes on all values in its natural
range (1,2,3 for i, j, k, /, or m, and 1, ... , n for r, s, or u).

KINETIC ENERGY AND ANGULAR MOMENTUM

One can generate equations of motion for S by making use of T, the kinetic energy of S in N,
and H, the angular momentum of S relative to S* in N. To this end, one can begin by expressing
T as

(5)

where m and v stand for the mass and velocity of a generic particle P of S in N, and the symbols
() denote summation over all particles of S. The velocity v can be expressed as

v = v* + bJ X P + PAr (6)

(7)

where v* is the velocity of S* in N, p is the position vector Of P relative to S*, and p.r is the
derivative of p with respect to qr in B. The first two terms represent the velocity in N of a point
fixed in B and instantaneously coincident with P, and the third term represents the velocity of P
in B.

Using (6) to eliminate v from (5) yields

2T= (m(v* + bJ X P+ pAr)2)

= {m [(v*f+ 2v* . bJ xp+2v*' pAr

+(bJ X p)2+2bJ X p' pAr + pAr . pAs])

Since S* is the mass center of S, the second and third terms vanish. Now,

(m(bJ x p)2) = bJ . {mp x (bJ x p»

= bJ . (m(p' PbJ -pp' ro»

:= bJ' (m(p' pU-PP»)·l.!) (8)

where U is the unit dyadic, and {m (p . pU - pp» is simply the inertia dyadic I of S for S*. Hence

and, after defining Mrs and hr as

A
Mrs (mP.r·p.s) r,s=l, ... ,n

and

A
hr={mpxP.r} r=l, ... ,n

one hast

Next, by definition, the angular momentum H of S in N relative to S* is given by

H:= (mpxv) = (mpx (l.!) xp+pAr»
tb)

:= (m(p' pU -pp»). l.!) +(mp x pAr)

Consequently

and (12) and (14) are the desired expressions for kinetic energy and angular momentum.

tNumbers beneath signs of equality refer to corresponding equations.

(9)

(10)

(11)

(12)

(13)

(14)
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EQUATIONS OF MOTION

Since, by hypothesis, the resultant moment about S* of all external forces vanishes, the
angular momentum H of S relative to S* in N is fixed in N. It follows that

(15)

where nh nz, n3 form a dextral set of orthogonal unit vectors fixed in N and HI, Hz, H3 are
constants. Moreover, one may require, without loss of generality, that nh Oz, n3 be coincident
with bh bz, b3, respectively, at an arbitrary instant to.

If H is expressed as in (14), then

nj . (I . (I) + h,.q,) = HI i = I, 2, 3
(15)

(16)

These equations will be referred to as the external equations of motion.
By hypothesis, S is holonomic; therefore, the generalized inertia forces Ft, ... , F~

associated with the internal coordinates can be expressed as (see [29], p. 134)

pt; =- t,r + T., r =1, ... , n

and, using (12), one obtains

2F: = (I) • Iu • (I) - 2«(1) . hu + (I) • huA,)
(17)

+ 2(1) . h,A, - 2(Mu,q, + Mu,.•q,.q.)
+M...u44. u = 1, ... , n

(17)

(I8)

Equations of motion can now be formulated by setting sums of generalized active forces and
generalized inertia forces equal to zero, which produces

Mu,q, - [(2-1M...u- Mu,.• )4. + (I) • (hu., - h•.uWI.

+til . hu - 2-1(1) ·I.u • (I) + V.u - Du = 0 U = 1, ... , n (19)

These equations will be referred to as the internal equations of motion.

QUASI-RIGID BODY MOTION

A motion of S during which qh ... ,q" remain equal to zero will be called a quasi-rigid body
motion. During a quasi-rigid body motion, the external equations of motion, (16), reduce to

while the internal equations of motion, (19), become

til· hu - 2-1(1) . i.u • (I) + V.u =0 u =1, ... ,n

(20)

(21)

Here (3) has been used to eliminate D., . .. ,D" from the internal equations of motion and, as
throughout the sequel, a tilde over a symbol indicates that the quantity represented by the symbol
is to be evaluated at q. = ... = q" = 0; for example, iii = hl(O).

Under certain circumstances, a quasi-rigid body motion is possible when (I) has a constant
magnitude 0 and is at all times parallel to b l ; that is, (I) remains fixed in B and hence also in N.
Such a motion is called a simple spin. Conditions sufficient for the existence of a simple spin can
be obtained from (20) and (21): replacing (I) with Obi in (20) and (21) yields

(22)

and

(23)
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respectively, where i l is the moment of inertia of S about B I when ql = ... = qn = O. (22) is
identically satisfied during a simple spin and satisfaction of (23) guarantees the existence of a
simple spin.

LINEARIZED EQUATIONS
Together, (16) and (19) form a set of n + 3 differential equations in the unknowns WI, W2, W3,

q., , .. , qn, The coefficients of these quantities and of their time derivatives are functions of
qh"" qn since p is such a function and the coefficients all depend on p [see (10) and (11)].
Consequently, the equations of motion are nonlinear. Moreover, they are strongly coupled.
Hence, one is confronted with formidable obstacles when attempting to solve these equations.
However, the following possibility presents itself: if the system under consideration possesses a
quasi-rigid body motion, one may hope to extract information about nearly quasi-rigid body
motions from equations generated by linearizing the present equations in q I, •• , , qn ; and the new
equations may be more manageable than the earlier ones. This turns out to be the case, as will
now be shown.

To begin the linearization, I, bu , Mu" V.u, and Du are expanded in Taylor series:

1= i + i.,.q, + 2- l qri,rsq. + 03(q)

bu =hu +hu.,.q, + 02(q) u = 1, , .. , n

V.u= V.u+ V.u,.q, +02(q) u = 1, ... , n

Du= Du.,.q,+Du,,4,+ 02(q,Q) u = 1, .. "n

(24)

(25)

(26)

(27)

(28)

where, for example, 03(q) indicates terms of third or higher degree in qh.,., qn' Next, these
expressions are substituted into (19), and all terms of second or higher degree in q .. ' , . , qn are
dropped, Thus one arrivers at the linearized internal equations of motion

Mu4,+ [6) , (bu., - b,.u) - Du•• ]4,

+(w ' bu., - 2-1
6) • i.u, . 6) +V.u, - Du.,)q,

=-~ , b. +2-1
6) • i ... 6) - v,. u = 1,. , . , n (28)

Before proceeding to the linearization of the external equations of motion, it is convenient to
define matrices w, C, I, I." h" and H as follows:

where

where

<1
W = [WI W2 W3]

[e.. CI2 en]C ~ C21 C22 C23
C31 C32 C33

<1
Cij =ni 'bj i,j=I,2,3

[t. 0

~JI ~ ~ i2
0

- <1 _

Ii = b i • I . b i i = 1, 2, 3

(30)

(31)

(32)

(33)

(34)

r = 1, .. ,. n (35)
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(36)

(37)

(38)

These, together with (24) and (25) and the fact that bl, ~, b3 are parallel to principal axes of S for
S* when ql = ... = q. = 0, permit one to rewrite (16) in the matrix form

(39)

where CTdenotes the transpose of C. Furthermore, since eTc equals the identy matrix, one can
solve (39) for cu, obtaining

The matrix inverse appearing in (40) can be evaluated as follows:

[
all A21 a31J

[1 +1.,(/r +02(q WI = a-I a12 a22 a32
al3 An a33

(40)

(41)

where a represents the determinant of [1 +1.rqr +OiQ)] and aij (i, j =1,2,3) is the cofactor of
the element in the ith row and jth column of [I + I.rqr + 02(q)]. After evaluating the cofactors,
one has

-13112.,(/r

1311 + (/311.r +13.JI)qr
-IJ32,,(/r

The determinant a can be written as

(43)

and use of the binomial theorem permits one to write

(44)

One can now eliminate a from (42), with the result

-<iJ2rlx i12.rqr
i2-1(1- k 1i2.,(/r)

-(1312rl x h2,,(lr

Substitution from (45) into (40) and subsequent linearization in q), . .. ,qn, qt. . .. ,q. leads to the
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linearized external equation 0/ motion

in
(46)

The matrix C appearing in this equation requires further consideration. Since the elements of
C depend on the orientation of the unit vectors bh bz, b3relative to the unit vectors Rio nz, n3 [see
(32)], that is, on the external variables 810 8z, 83, the matrix C is, in fact, an unknown matrix.
However, it can be related to Cd through a set of so-called kinematical equations, one form of
which involves Euler parameters Eh' . , , E4' In terms of these, Ci (i, j = 1,2,3) are given by (see
[28], p. 8)

CII = 1 2(El+ E3Z
)

C\2 = 2(EI£z - E3£4)
Cn = 2(£3£1 + £Z£4)
CZ1 = 2(£1£2 +E3E4)
C22 = 1- 2(£/ + E12

)

C23 = 2(£2£3 - E4EI)
C31 = 2(E3EI - E2£4)
C32 = 2(£2£3 + £4£1)
C33 = 1-2(£/+£22)

and £10' .. , £4 are related to Cd through the differential equation

(47)

(48)

The right-hand member of this equation can be expressed as a function of qh" . ,qn, qh ... ,q",
and £10"" £4 by using (46) to eliminate Cd. The resulting matrix equation furnishes four
differential equations which, together with n equations derived from (29), ultimately permit one
of determine the configuration of S in N by solving for the n +4 quantities qh"" qn, and
Eh' ., ,£4. To obtain the latter set of n equations, one first forms an expression for w by
differentiating (46), then eliminates wand (JJ from (29) by using this expression and (46), and
finally linearizes in qh' .. ,q", ql, ... , qn' The result can be expressed in a convenient form in
terms ofthree n-dimensional square matrices U, X, Y and two n-dimensional column matrices Z and
Q with elements Uu" XU" Yu" Zu, Qu, respectively, defined as

.:l. '_1 - __

Yu, = HiCij~- (~k.,Ik-lhu 'bk - hu., 'bi ) + HiCij~-IL-tHmCml

1- - - - - -(2- ~l.u, - Iik.Jkl.ulk- 1
) - v.u, +Du.,

Specifically, one finds that

Q = U-1(XQ + YQ +Z)

where U- t is the inverse of U.

(49)

(50)

(51)

(52)

(53)

(54)
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SIMPLIFICAnONS
Implicitly, (48) and (54) depend upon the quantitities Mu" ii., iiuo" i, iou, Lr (r, u = 1, ... , n)

each of which involves a summation over all particles of S [see (to) and (tI)]. If a subset of S
forms a rigid body R, then the contribution of R to these quantities can be written in forms not
explicitly involving sums over the particles of R, but involving, instead, inertia properties of R.
For example, (M.r)R, the contribution to Mur of R, is given by

(55)

where mR is the mass of R; pRO is the position vector of R*, the mass center of R, relative to S*;
fJW ~.. (u = I, . 0 • , n) is the partial rate of change of orientation of R with respect to q. in B; and
IR/ROis the inertia dyadic of R for R* [see [29], p. 140, eqn. (4.26)]. To generate analogous
expressions for (iiu)R and (iiuor)R (r, u = I, ... , n), the contributions to Ii. and ii•.r of R,
respectively, let HR/

SO denote the angular momentum of R in B relative to S*. Then

H R /S
O ~ (mp x v) (56)

where now the symbols () imply summation over all particles of R, and m, p, and v are
respectively the mass, the position vector relative to S *, and the velocity in B of a generic
particle of R. Expressing v in terms of derivatives of p gives

HR/SO = (m p x Po. )q. = (h. )Rq.
(II)

(57)

where (h.)R (u = I, ... , n) represents the contribution of R to h•.
If HR/ROdenotes the angular momentum of R in B relative to R*, and HRO/SOdenotes the

angular momentum in B relative to S* of a fictitious particle whose motion is identical to that of
R * and whose mass is equal to mR , then

HR/SO= HR/RO+ HROISO (58)

where

HR/RO= IR/Ro . (BWRo"q.) (59)

and

HRO/SO= mR pRO x (p~Oq.) (60)

(see [29], p. 163, problem 7/). Using (57), (59), (60) to eliminate HR/SO, HR/
RO

, and H RO/SO, from
(58), subsequently equating the coefficients of qu (u = I, ... , n) to zero, and finally solving for
(hu)R yields

(61)

Differentiating with respect to qr (r = l, 00" n) and letting ql = ... , qn = 0 produces the desired
result, namely

(ii ) =iR'Ro.BwR·+iRIRooBwR. +m (p-ROXp-RO+-ROX"RO)
U,r R.r . u • ur R.r .u p p ,ur

while letting q, = ... = qn = 0 in (61) yields

r, u = I, 00', n (62)

(63)

The contributions of R to i, i.u , and i our (r, u = I, .. 0 , n) are found most conveniently by
expressing (l)R, (iijoU)R, and (iijour)R, defined respectively as the contributions of R to the elements
of i, i.. and i ou" in terms of I~/Ro (i, j = 1,2,3), the product of inertia of R relative to R* for fi
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and fj> where fl> fz, f3 form a dextral set of orthogonal unit vectors fixed in R, and /3: (i, j = 1,2,
3), defined as

The desired relations are

/3 ~ ~ bi • fj i, j = 1, 2, 3 (64)

(Zj,U)R = nIRO(t3~,uM+ t3~t3~,u) + mR[2(pR
O , P~O)(bi ' bj)- (p~O . bj)(pRO . b,)

- (p~O . b,) (pRo. bj») i, j =d, 2, 3; u = 1, ... ,n (66)

- _ RIRO -R -R -R -R -R _R -R -R
(Iij.ur ) R - hi (/3 ik,ur/3 jI + /3 ik,u/3 jl,r + /3 ik,rf3 jl,u + /3 ik/3 jI,ur)

+ mR [2(p~: . ir+p~o . p~O) X(bi . bJ) - (p~: . bi) (pRO. bj) - (p~: . b j ) (jiRo . b,)

- (ji~o. b,) x (p~O . b;) - (p~O . bj)(p~O . bi) i, j = 1,2,3; r, U = 1, ... , n (67)

Any particle of S that does not belong to a rigid subset of S can be considered as a rigid body
with zero inertia dyadic IRIRo . Thus, one can always regard S as a collection of l' rigid bodies and
use each of (55), (62), (63), and (65)-(67) l' times to evaluate the contributions of the l' bodies to
Mu" bu , bu,,, f, Lj,u, iij,ur (i, j = 1,2,3; r, U = 1, ... ,n), and this makes it unnecessary ever to carry
out a summation over the particles of S.

COMPUTER PROGRAM SAM

(48) and (54) form the basis for the FORTRAN computer program SAM (Satellite Attitude
Motions). This program is intended to be a tool an analyst can use to obtain information about the
motion of a dynamical system without deriving equations of motion and without writing any
computer code. Rather, the analyst furnishes a set of constants characterizing certain properties
of the system in its undeformed state, a set of initial values for the internal coordinates and their
time derivatives, the initial values of the bl> bz, b3 measure numbers of the angular velocity of B
in N, four integration parameters, a title, and a date; the program then produces a detailed
description of the motion that occurs subsequent to the initial instant.

The analytical tasks that must be performed by the user of the program begin with the
numbering of the bodies forming the system S and the internal coordinates of S as, respectively,
1,. " ,1' and 1, ... ,n, the internal coordinates having been selected in such a way that they may
be expected to remain small throughout some time interval beginning with the initial instant.
Next, to account for the distribution of mass throughout S, a mass mR is assigned to body R
(R = 1, ... ,1'), an arbitrary reference point 0 of S is selected, and the position vector gR of the

mass center of body R relative to 0 is used to express g,R, defined as g,R ~gR . b" as a function of

ql>' .. ,qn, where bl< bz, b3are unit vectors forming a dextral, orthogonal set such that each unit
vector is parallel to a principal axis of inertia of S for the mass center S* of S when q I> ••• , qn
all vanish. These functions are then evaluated at ql = ... = qn =0 to obtain quantities designated
g,R (i = 1,2,3; R =1, ... ,1'), and they are differentiated with respect to the internal coordinates
to generate first derivatives g~r and second derivatives g~rs (i = 1,2,3; r, S= 1, ... , n;
R = 1, ... , 1'), where tildes again denote evaluation at q I = ... = qn = O. Similarly, to deal with
moments and products of inertia of S, IRIRO, the central inertia dyadic of body R, and fIR, fzR, f3R,
a dextral set of orthogonal unit vectors fixed in body R, are employed to form 1~IRo, defined as

A
1ftiR

O
= ft· IRIRO

• f/; and required direction cosine information related to body R is

generated by defining /3~ as /3~ ~ bi . ft, expressing /3~ as a function of ql> ... ,qn, and then
evaluating {3:, t3~,r and t3~.rs (i, j = 1, 2, 3; r, S= 1, ... ,n; R = 1, ... ,1'). Here, if body R is a
particle, all quantities involving R as a superscript are set equal to zero. The final task related to
the individual bodies forming S is to let BlAJR be the angular velocity of body R in a reference
frame B in which bl> bz, b3 are fixed, to define w,R as Wi

R ~ BlAJR • b" and to evaluate the

IJSS Vol. 13, No. l-D
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derivatives wf, and wf,s (i :::: J, 2, 3; r, S :::: J, ... , n; R :::: I, ... y), again setting equal to zero all
quantities involving R as a superscript if body R is a particle. It then only remains to formulate
V(qI, ... , q.) and D,(qJ, ... , q., q.. ... ,q.), which must be such thatthe generalized activeforce Fr
corresponding to q, can be expressed as F,:::: - V" + D" and to evaluate the derivatives V,,, V"" 15,.."
and D,.s (r, S :::: I, ... , n). Once all of this has been done, the analyst can assign

initial values to q" q, (r = I, ... , n), and Wi, defined as WI ~ W . bi (i 1,2,3, where w is the
angular velocity of B in N, select the interval of time for which a simulation of motion is desired,
prepare data records, and make a computer run. (More detailed instructions for using SAM, as
well as a listing of the FORTRAN code for SAM, are contained in [30].)

The integration algorithm used by SAM requires algebraic expressions for the highest
derivatives of the dependent variables in terms of the lower derivatives of the dependent
variables, the dependent variables themselves, and the independent variable. Thus expressions
for Et and ii, in terms of e" q" q, (i I, ... , 4; r :::: I, ... , n) are required in the present case. For
EJ, ... , E4' these are obtained from (48) after using (46) and (47) to eliminate wand C; and (54),

together with (49)-(53), furnish the necessary expressions for iiJ, ... , ii•.
The output from SAM includes a list of all the input records, and, if errors are detected by

SAM in the input data, error messages. In the event errors are detected in the form of the input
data, the program terminates before beginning to integrate any equations. If no errors are
detected in the input data, the output continues with a table containing values of time, the angle
between b l and the linearized angular momentum H (a vector fixed in N obtained by using (39)
and dropping terms of second and higher degree in qJ, ... , qn), the magnitude of the linearized
angular momentum (which should remain constant), the bl, b2, b3 measure numbers of the angular
velocity of B in N [see (46)], the Euler parameters relating b.. b2, b3 to unit vectors fixed in Nand
initially coincident with bJ, b2, b3, the sum of the squares of the Euler parameters (which should
remain equal to unity), the internal coordinates, and the first time derivatives of the internal
coordinates.

EXAMPLE

To illustrate the use of the program SAM, a particular motion of a spacecraft carrying a
passive nutation damper is simulated. The same system has been studied in detail by Kane and
Levinson [31]. It is composed ofa rigid body Wand a particle P, as indicated in Fig. 1. WI, W2 , W3

are principal axes of inertia of W for W*, the mass center of W, and WI, W2, W3 are unit vectors
respectively parallel to WI, W2 , W3• W is assumed to be a homogeneous 'right parallelepiped
with sides L .. L 2, L 3 and mass mw. The particle P has a mass mp and is constrained to move on a
line parallel to WI and passing through W2 at a distance"a" from W*. The particle P is attached
to W by a massless linear spring and dashpot such that the force transmitted to P by W is given
by -(O'x +MX)WI, where 0' and 10' are constants and x is the distance from W2 to P. As before, N
designates a Newtonian reference frame.

W may be numbered body 1, and P body 2. The system S formed by these bodies possesses
but one internal degree of freedom, and the associated internal coordinate ql may be taken to be
the distance x. S can perform a quasi-rigid body motion during which x remains equal to zero,
namely a simple spin of W during which the angular velocity of Win N is equal to OWl> where n
is a constant. Hence, x may be expected to remain small, if not permanently, then at least
throughout some time interval beginning at an instant at which, for example, x = i = 0 and the
angular velocity of Win N is given by WI +0.1W2' Next, values are assigned to ml and m2 in
accordance with the first line of Table 1; point W* is selected as reference point 0; b" b2 , b3 are
taken to be WI> W2, W3, respectively; and gi is expressed as shown in lines 2-4 of Table I, after
which giR

, gf" and gf,. are formed as shown in lines 5-13. Similarly, to deal with the inertia
properties of S, r/, r2

R
, r3

R are taken to be WI, W2, W3, respectively, for R = 1 (for R :::: 2, inertia
properties are not needed); I~ and f3~ are expressed as shown in lines 14-19, and it is noted that
1i:'1 and 1i~.11 (i, j :::: I, 2, 3; R :::: J, 2) all vanish as do Wi

R
, and hence Wfi and wf.il (i = J, 2, 3;

R 1, 2), for body 1 is fixed in B and body 2 is a particle. Thus, what remains to be done is to
formulate V(ql) and DI(qh (1). Now, the generalized active force F I corresponding to ql is given
by F1 :::: -(O'ql +10'(1)' Hence, if V and D 1 are taken to be V = O'q//2 and D I = -10'41> then
FI - V.I +DI> as required. Consequently, V. I = 0, V. II = fr, 151.1 = 0, and 151.1= -10'.
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Fig. I. Schematic representation of spacecraft with passive nutation damper.

Table I. System constants for spacecraft with passive
nutation damper

Line Quantity R= I R =2

I mR mw mp

2 g,R 0 q,
3 g,R 0 a
4 g,R 0 0
5 - R 0 0g,
6 - R 0 ag,
7 - R 0 0g,
8 -R 0 Ig,.,
9 -R 0 0g,.,

10 -R 0 0g,.,
II -R 0 0gl.lI

12 -R 0 0g,.11
13 -R 0 0gJ,1I

14 If, mw(L,' + L,')/12 0
15 n, mw(L,' + L,')/12 0
16 I~, mw(L,' + L,')/12 0
17 mU~k) 0 0
18 ~~(i=j) I 0
19 {3~(i~j) 0 0
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SAM was run with initial values and numerical values for the system parameters as follows:
ql(O} ={It(0} =0, WI(O} = 1rad sec-I, W2(0} =0.1 rad sec-I, W3(0} =0, a = 1 m, mw =5274.824 kg,
mp =52.748 kg, L 1 =2 m, L 2 =0.948 m, L 3 = 1.008 m, (T =52.748 Nm-I, and /.L =
105.496 N sec m-I. The results permitted the construction of Fig. 2 which shows as the curve
labeled "motion with nutation damper", a plot of a vs. t, where a is the angle between the
angular momentum vector H and the unit vector b l or, equivalently, the angle between H and line
WI (see Fig. 1). In addition, Fig. 2 contains a line labeled "rigid body motion", which reveals how
the angle between H and WI would vary with time if P were rigidly attached to W with x = O.
This line was constructed on the basis of the following considerations: When P is attached to W
as stated, S is an axi-symmetric body; that is, S has the same moment of inertia about every line
passing through the mass center of S and perpendicular to WI (the values for a, mw, mp, L h L 2 ,

L 3 were chosen so as to produce this result). Consequently, the angle between WI and H must
remain equal to its initial value throughout every motion of S.

The fact that the two curves in Fig. 2 become widely separated with increasing t justifies the
conclusion that the particle P, despite its relatively small mass (mplmw = 0.01), influences the
motion of W profoundly. This is all the more noteworthy when one observes from the computer
output of SAM that x varies in an oscillatory manner, never acquiring an absolute value in
excess of 0.31 m during the time interval under consideration. But are these conclusions, in fact,
valid? To answer this question, the exact differential equations of motion were integrated
numerically. Gratifyingly, the agreement between the results of the numerical integration of
exact equations and those obtained from SAM is very good. Indeed, the values of a obtained



50 R. L. ROTH and T. R. KANE

75~---------------------'

MOTION WITH
NUTATION DAMPER

_ RIGID BODY MOTION

400o
TIME (seconds)

Fig. 2. Plot of a vs time for spacecraft with passive nutation damper.

from the two programs never differ from each other by more than 0.2 degrees. Fig. 2 thus
represents the exact solution as welI as the one produced by SAM, and one may conclude that
SAM is capable of simulating motions involving large attitude changes, the linearizations
underlying SAM notwithstanding.

The present example illustrates the practical utility of SAM in a number of ways. For
example, it shows that SAM furnishes convenient means for testing the stability of a motion, for
it will be recalIed that W would perform a simple spinning motion if the initial conditions were
modified in only one respect, namely by changing W2(0) from 0.1 rad/sec to zero. Thus the initial
conditions used in the computer run represent a disturbance of the simple spin, and the results
obtained indicate that the latter motion is unstable. The same conclusion was reached in[31] via a
comparatively laborious stability analysis. However, the physical significance of an instability
uncovered without simulation is always in doubt. Hence, even when a stability analysis has been
performed, SAM can furnish useful additional information. Of course, this information could be
gained also without using SAM, that is, by simulating the disturbed motion with a program based
on exact equations of motion, as was done for the purpose of testing the validity of SAM in the
present case. However, deriving exact equations of motion and programming their solution
consumes considerably more time than does preparing the data records for SAM.
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